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Abstract
The long-term performance of Si-Ge alloy thermo-

couples in Hectowatt radioisotope thermoelectric gen-
erators (RTG’s) is known to be significantly reduced by
degradation effects which are, in part, due to the pre-
cipitation of dopants in the thermo couple legs. The
time-dependent behavior of both polarity types of Si-Ge
alloys obeys the kinetics of a diffusion-limited precipi-
tation model. We show how the growth of precipitate
zones is controlled by the low energy instabilities of
solitons in the continuum Ising model of binary phase
systems. The soliton description provides a simple in-
tuitive picture of the kinetics of precipitate growth and
reproduces the correct rate law usual ly extracted with
greater difficulty from the conventional diffusion-based
models.

I dont know what it means, that nature chooses these
curious forms, but maybe that is a way of defining
simplicity. Perhaps a thing is simple if you can de-
scribe it fully in several different ways without im-
mediately knowing that you are describing the same
thing.

—R. P. Feynman

Introduction
The rate of precipitation of the dopants Phospho-

rus and Boron from solid solution in SiliconGerma-
nium alloys is well-known [1, 2] not to conform to the
conventional empirical rate law [3, 4] usually applied
to the precipitation of dopants in semiconducting ma-
terials. Moreover, since the rate of precipitation is a
significant factor in determining the long-term relia-
bility of devices such as Hectowatt RTG’s based on
doped Si-Ge alloy thermocouples, considerable effort
has been devoted to determining the appropriate rate
low and also to improving our theoretical understand-
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ing of why the conventional law is not applicable to
Si-Ge systems.

I would like to take the opportunity presented by
this conference on thermoelectric energy conversion to
tell you about some of the most current thinking re-
garding the kinetics of precipitation in two-component
systems. In our case the two components are identified
with the Si-Ge alloy on the one hand and the dopant
on the other.

Ekstrom and Dismukes [1] were able to show early
on that the rate of precipitation of Phosphorus in Si-
Ge under isothermal annealing conditions obeyed a ki-
netic model developed by Wagner [5] and Lifshitz and
Slyozov [6] for the spinodal decomposition of binary
systems. In this (postnucleation) model the conven-
tional diffusion theory is modified to incorporate the
interfacial surface tension, σ, between the precipitate
zone and the solvent. The rate of zone coalescence
is parametrized by a critical zone radius, r0, below
which precipitate zones redissolve, while zones with
radii greater than r0 are amplified at the expense of
the smaller zones. This consumption mechanism is
the essential feature of the model which determines
its unique rate law. The growth of the precipitate
volume is given explicitly by

r(t) 3 =
(

8mσD

9kTδ

)
t (1)

where r(t) is the average zone radius at time t, m is
the molecular mass of the alloy, D is the diffusion co-
efficient for the dopant in Si-Ge, δ is the alloy density,
k is Boltzmanns constant and T is the Kelvin temper-
ature. Lifshitz and Slyozov derived equation (1) using
asymptotic scaling conditions but, unfortu nately, the
mathematical machinery of their analysis obscures the
physics behind this remarkable result. Raag [2] con-
firmed the applicability of this model for both ntype
and ptype alloys over much longer annealing times,
and extrapolated the reliability data for the Si-Ge al-
loy thermocouples up to 12 years. Langer [7] in his



pioneering study of first-order phase transitions [7–9]
showed that equation (1) could be derived by consid-
ering the stability of stationary solutions to a general-
ized FokkerPlanck equation. More recently [10], it has
been shown that a consistent treatment of these kinds
of firstorder phase transitions can be developed on the
basis of a continuum Ising model [11–14]. In this lat-
ter freatment it is found that both the approach to the
firstorder phase transition (nucleation) and the kinet-
ics of precipitation (coalescence) are controlled by the
low energy fluctuations of a certain kind of wavelike
solution to the Ising model; the kink-soliton. Before
proceeding with the main purpose of this paper, I want
to say a brief word about solitons since they seem to be
creeping into all areas of science and there is no rea-
son why scientists involved in thermoelectric energy
conversion should be allowed to avoid them!

The word soliton has been around for over a
decade [15–17] but its origins are much older. The
concept stems from the carefully documented observa-
tions of a solitary wave of translation by the engineer
John Scott-Russell early last century [18]. Solitons are
not just traveling waves in the usual sense, they are
the stable result of a nonlinear disturbance in a dis-
persive medium. Generally speaking, these two con-
ditions mean that things should fall apart very quickly.
Dispersion implies that different Fourier components
propagate with different velocities, so that an initial
solitary wave pulse should disinte grate. But, solitons
owe their remarkable stability precisely to the nonlin-
earity which couples these different Fourier modes in
such a way that it exactly compensates the tendency
to disperse. Only a few types of nonlinear models are
known to support solitons and the Ising model is one
of these.

The physical soliton that Russell witnessed is more
common ly referred to as a hydraulic bore nowadays,
and they are indeed very stable wavefronts, having
been seen miles upriver from their point of origin. (It
seems Russell was required to make his study on horse-
back!). Another physical example of a soliton, more
closely related to our discussion, is the stable wave-
front or wall between two magnetic domains of oppo-
site spin align ment in a ferromagnet. The interface
between the two domains is very similar to the pre-
cipitate interface mentioned earlier. I could say much
more about solitons but this is not the place to do it.
Until recently we had these apparently independent
strands of theory, some of which concerned diffusion
models and others relating to solitonbearing models.
Now we have found that the Ising model unifies some
of these strands into a single fabric. This unification

process is very much a current trend in physics and
other sciences. Maybe, as Feynman suggests in the
rubric, this is a measure of simplicity in science. Let
us concentrate now on the role of solitons in precipi-
tation kinetics.
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Figure 1: Parabolic potential well above the transition
temperature Tc.

The TwoPhase Model
The starting point for our treatment is a version of

the so called Ising model first developed as a twostate
model of a magnetism. You can think of the two states
as being the up and down orientations of a classical
spin system representing a ferro magnet. In our case
they refer to the two components in the binary (alloy
and dopant) system.

The energy of such a system can be represented in
the following way. Imagine we are above the transition
tempera ture, Tc, where there exists a single stable ho-
mogeneous phase. We can represent this phase by the
parabolic well shown in Fig. 1. The stability of this
phase is represented mechanically by the unique mini-
mum energy value at the origin. As we descend below
the transition point at Tc, the single phase separates
rapidly into two well-defined phases. (Incidentally, the
mechanism for such a sharp transition is only now just
being understood by physicists.) In our mechanical
analogy, the single well has now developed two min-
ima and represents a bifurcated anharmonic oscillator
(Fig. 2). The two minima correspond to the two sta-
ble phases below Tc. This mechanical analog is valid
only for a single point particle (or atom if you prefer).

In an alloy or fluid we see the cooperative effects
of many-particle interactions—so many that we have
to deal with statistical averages: statistical mechan-
ics. One way of going about this is to think of the
alloy as a continuum rather than a lattice structure,
then position coordinates, x, are replaced by density
functions which I’ll call φ(x)—it is the spin-density or
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Figure 2: The double-well below Tc.

concentration of the continuum at the point x. Solid-
state physicists also call φ(x) a scalar order parameter.
The Ising model, then, is the continuum analog of the
quartic potential in Fig. 2 written in terms of φ(x)
instead of x, and it looks like this:

V [φ] = − 1
2
µ2φ2(x) +

1
4
gφ4(x) (2)

where µ has the dimensions of mass and g is the cou-
pling strength. This form of the energy is directly re-
lated to the free-energy curves for binary alloys with
which material scientists are very familiar. It is the
potential energy expression for the Ising model and
differentiating the energy with respect to 0 gives us
the corresponding field equation of motion.

∇2φ(x)− µ2φ(x) + gφ3(x) = 0 (3)

But what is it that is in motion?
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Figure 3: The soliton solutions at the phase boundary
and the corresponding energy density of the interfacial
profile.

Well, as it stands this is a classical field-theoretic
equation, so you might anticipate that all kinds of so-

lutions are possible, depending on the boundary con-
ditions, but that most of these solutions would be in-
tractable analytically—just as one finds in Maxwells
equations for electromagnetic radiation. It turns out
however, that if we impose the boundary condition
that φ begin in one potential well, say at x → −∞
and end in the other well at x → +∞ then the lowest
energy solution to equation (3) (in one dimension) is
a stable solitary wave—the soliton (Fig. 3). It is de-
scribed analytically by a hyperbolic tangent function,

φc(x) =
µ
√

g
tanh

µ√
2

(x− x0) (4)

(By the way, there are no solitons in Maxwells theory
because the equations are linear in the fields.) Our
soliton is the wavefront or interface between the two
phases characterized by different densities—it is the
density profile between the SiGe and the dopant. As
shown in Fig. 4, you can envisage the soliton as a piece
of string which straddles the double well potential.
Since the well extends in infinity along the x-axis, it
would take an infinite amount of energy to unravel
the string so that it lay in one well only. There is yet
another way of visualizing the stability of the soliton,
and Ill refer to this point later in the discussion.
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Figure 4: The soliton interpolates between the minima
of the double-well potential function.

Although it is not apparent from what we have said
so far, there is a conservation law in operation. This
law says that the binary composition of the alloy must
be maintained always. In Fig. 3 you can see that the
corresponding energy density of the soliton is confined
to a width ∼ µ−1 about the origin at x0 Since the
amplitude of φc is set by the barrier height between
the two wells, this energy cannot diffuse away without
the soliton moving to x = ±∞ would be tantamount
to having a single phase and that situation disobeys
the conservation rule. The rate of precipitation is con-
trolled in a very special way by small, thermally driven
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fluctuations of the soliton, and this is what I want to
address more carefully, while at the same time avoid-
ing most of the impediments that arise from the math-
ematical details. To develop a better feel for the con-
nection between the soliton and precipitates I wont
to use what we have learnt so far to illuminate the
earlier comment concerning the critical radius, r0 For
simplicity (without loss of generality), we will assume
the precipitate zone to be spherical, then the soliton
represents the interfacial profile at the spherical zone
boundary—in fact, the sphere is enclosed by two soli-
tons on its diameter; one the reflection of the other.
The free energy (F) of this spherical zone of radius
r can be represented by the difference of two terms:
A surface energy S which is area-dependent, and a
volume-dependent bulk contribution B, such that,

F = S(r2)−B(r3) (5)

If r is less than a certain value, r then the surface
term domi nates and the zone shrinks (F > 0), while
if r > r0 the volume term wins and the zone grows
(F < 0). The precise value of r can be determined by
minimizing the energy of Ising model due to the soli-
ton contribution. The mathematical details are given
in Ref. [10]. So when r > r0 it corresponds to the
soliton-pair moving apart and when r < r0 they ap-
proach each other. This part is easy to understand,
but what is not so obvious (as Lifshitz and Slyozov
would have us believe!) is the essential feature of their
model whereby the larger zones consume the smaller
zones. The soliton picture provides a beautifully sim-
ple representation of this effect, but to appreciate its
virtue we need to understand the nature of the fluctu-
ations mentioned previously. As a precursor Im just
going to tell you, without a full explanation, that the
fluctuations in the soliton are pre cisely of the same
type as those that arise in the droplet-model of large
atomic nuclei. Since the energy is bounded at the sur-
face of the zone or droplet, the allowed energy states
are quantized ! These discrete levels are generated by
an eigenvalue equation of the form,

M χ` = E` χ` (6)

and are given approximately by the formula,

E` '
(`− 1)(` + d− 1)

r2
0

(7)

where ` = 0, 1, 2, . . . is the (orbital) angular momen-
tum quantum number and d is the number of spatial
dimensions. What is unusual about this expression for
the fluctuation energy is that when ` = 0, E0 does not

vanish but is negative! E1 vanishes and E` for ` > 2 is
positive. What do these values mean physically? Well,
the positive energy solutions simply correspond to sta-
ble distortions of the droplet (pmodes, etc.). The zero
energy solution belongs to translations of the droplet
since the origin is unspecified. The negative energy
solution is to be identified with radial dilatations of
the droplet or zone. It is this dilatation mode which
confrols both the nucleation process [10] and the pre-
cipitation rate, via equation (6) which is the analog of
the diffusion equation.

Growth Mechanics
Lets drop back to one dimension to see in detail how

the dilatations are related to the consumption mech-
anism. The secret to understanding the connection is
that we can no longer confine our attention to just one
soliton-pair or zone, rather we must consider a linear
array of n-zones or 2n-solitons. For ease of calcula-
tion we assume the configuration is already coarse so
that we have a “sawtooth” train of zones (Fig. 5), each
of separation λ. This linear superposition of solitons
corresponds to a new eigenvalue problem with χ in
equation (6) replaced by the Block wave

χk(x) =
n−1∑
j=0

exp(ikλj) Sech2(x− λj) (8)

where k = (integer) 2π
n is the wave vector. The fluctu-

ations are then determined by the explicit form of the
eigenvalues, E(k), in equation (6) with the appropri-
ately redefined operator M . Youll find the complete
calculation of E(k) in Langer [7] but I want to empha-
size the physical nature of E(k) here.
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Figure 5: Superposition of soliton anti-solitons form-
ing a Bloch wave the tight binding approximation.

Oscillations in the linear array shown in Fig. 5 sug-
gest there is going to be some overlap of the wave-
functions defined in equation (8). We want to pick out
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those overlap terms which are unstable, i.e., those con-
tributions which give negative values of E(k). Looking
at equation (8) you can see that the k-dependence of
E(k) will come entirely from the Fourier factor in the
sum since the hyperbolic function is independent of k.
You can think of the eigenvalues as arising in the fol-
low ing way. The dominant contribution comes from
first-order overlap terms, i.e., the sum up to j = `, so
that E(k) has the form,

E(k) ' (eikλ − e−ikλ)2 f(λ) (9)

where the minus sign means we are seeking the least
stable solutions and f(λ) is determined by integrating
the hyperbolic products over x. We can keep things
simple by recognizing that equation (9) can be rewrit-
ten as

E(k) = −4 sin2(kλ) f(λ). (10)

This is the dispersion law for the unstable dilatations
of the linear array of precipitate zones in Fig. 5. The
explicit k-dependence is shown in Fig. 6. As you can
see, maximal instability (the most negative value) oc-
curs at k = ±π/2λ while minimal instability sets in
as k approaches 0 or ±π/λ. (Actually the value k = 0
is unphysical since it corresponds to only one phase
existing in contravention of the conservation law men-
tioned earlier.)
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Figure 6: Dispersion relation for the dilatation modes.

Now, the value k = ±π/2λ when inserted into the
exponent in equation (8) generates coefficients in the
sum over of the type (±i)j . This degenerate pair
of modes corresponds physically to the inward and
outward translation of alternate pairs of so1 itons as
shown in Fig. 7. β-rich zones grow and diminish in size
alternately, while the α-rich zones retain their size as
they move toward each other—the end result of the di-
latations being a doubling in the coarseness parameter
λ. The other mode simply corresponds to permuting
α and β.
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Figure 7: Coalescence of the α and β phases as a con-
sequence of the long-wavelength fluctuations.

Another more stable (slower) mode of consump-
tion occurs near k = ±π/λ where E(±π/λ) = 0 cor-
responds to a translation mode as described before.
Near k = 0 on the other hand, the modes correspond
to the coalescence of large groups e.g., α-zones grow-
ing throughout half the alloy and shrinking through-
out the other half. This is a very slow deformation
process which would result in complete separation of
the two phases.
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Figure 8: Computer generated plot of soliton anti-
soliton annihilation.

If you have followed most of what I have said so far
in this talk, you may be struck by something very odd
in this soliton controlled growth picture. I started off
by telling you about the remarkable stability of soli-
tons and having convinced you of that feature I now
seem to be saying that they are not stable but can
mutually digest one another! Well, the point is that
single, isolated solitons are stable, but pairs of soli-
tons can interact or scatter in many different ways.
In fact the soliton-pairs we have been discussing are
really pairs consisting of a soliton and an antisoliton:
like matter and anti-matter they annihilate one an-
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other on contact. So everything really is consistent.
A quick search of the technical literature [19] uncov-
ered a computer-generated plot (Fig. 8) showing how
the soliton-anti-soliton annihilate one another leaving
a small oscillating remnant as the only evidence of
their prior existence.

Finally, a remark about the form of f(λ). As λ
becomes larger, making k smaller, the consumption
process slows down as the energy becomes less nega-
tive. These large groups do not interact as strongly as
the original smaller zones—there is a kind of screen-
ing of the interaction which is separation-dependent.
In fact, it turns out that this screening has the same
form as Yukawas old model of the nuclear force, i.e.,
f(λ) = λ−1exp(−2λ). I don’t know why there should
be so much nuclear physics in Si-Ge alloys?

The Rate Law for 3-Dimensions
With the onedimensional representation of 3 in

mind, it is now a relatively straightforward matter to
go over to three dimensions and recover the rate law
given by equation (1).

In three dimensions, the operator M of equation
(6) now develops a centrifugal barrier term going like
`(` + 1)/2r2 and the eigenfunctions χ now involve
spherical harmonics. These effects combined with the
discrete levels given previously in equation (7) modify
the explicit eigenvalues for a spherical zone of radius
r. The frequency of the fluctuations is now given by

ω` =
(` + 1)(` + 2)(`− 1)

r3
(11)

If the number of spherical zones per unit volume is N
and ω0 is the inverse lifetime for the growth or decay
of a single zone, then the appropriate rate law can be
written as

dN(t)
dt

= −|ω0|N(t). (12)

But, N depends inversely on the zone volume r3 Sub-
stituting in this explicit r-dependence and integrating
equation (12) furnishes the result

r(t) ∼ const. (2σt)1/3 (13)

in agreement with equation (1) (as promised). The
complete process of precipitate evolution is shown
schematically in Fig. 9. The initial development con-
sists of zone growth directly from the solution which
continues until the degree of supersat uration has
fallen to the point where the mean zone radius is of the
same size as the critical radius whereupon coalescence
supervenes at time tc.

The initial stage obeys a parabolic rate law,
r3(t) ∼ t3/2, while the coalescence kinetics is given by

Blank

Figure Area

Figure 9: Early precipitate growth follows a parabolic
rate law up to Tc and thereafter follows the Lifshitz-
Slyoozov law.

equation (13). In general we have shown that the most
unstable fluctuations are those corresponding to evap-
oration from the smaller shrinking zones and comple-
mentary condensation into the larger growing zones.
Whether this process is the dominant mechanism in
all alloy coarsening is doubtful, in view of some more
recent work [20] supported by compute which predict
slower rate curves behaving like t1/4 but a discussion
of this point would take us too far afield.

In closing, I think it is worth reiterating that the
current picture of precipitation kinetics, based on the
exotic language of solitons, has provided us with the
clearest picture yet of the real growth mechanism, and
its intimate connection with the nucleation process.
My hope is that this modern soliton picture can be
developed further, or at least taken over into other ar-
eas of solid-solution kinetics and continue to improve
our understanding of thermoelectric materials in gen-
eral.
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